Computational Evaluation of Strain Gradient Elasticity Constants

نویسندگان

  • R.H.J. Peerlings
  • N. A. Fleck
چکیده

Classical effective descriptions of heterogeneous materials fail to capture the influence of the spatial scale of the heterogeneity on the overall response of components. This influence may become important when the scale at which the effective continuum fields vary approaches that of the microstructure of the material and may then give rise to size effects and other deviations from the classical theory. These effects can be successfully captured by continuum theories that include a material length scale, such as strain gradient theories. However, the precise relation between the microstructure, on the one hand, and the length scale and other properties of the effective modeling, on the other, are usually unknown. A rigorous link between these two scales of observation is provided by an extension of the classical asymptotic homogenization theory, which was proposed by Smyshlyaev and Cherednichenko (J. Mech. Phys. Solids 48:1325–1358, 2000) for the scalar problem of antiplane shear. In the present contribution, this method is extended to three-dimensional linear elasticity. It requires the solution of a series of boundary value problems on the periodic cell that characterizes the microstructure. A finite element solution strategy is developed for this purpose. The resulting fields can be used to determine the effective higherorder elasticity constants required in the Toupin-Mindlin strain gradient theory. The method has been applied to a matrix-inclusion composite, showing that higher-order terms become more important as the stiffness contrast between inclusion and matrix increases. ∗Corresponding author: [email protected] Email: [email protected] 0731-8898/04/$20.00 © 2004 by Begell House, Inc. 599 600 PEERLINGS AND FLECK

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semi-analytical Solution for Flexural Vibration of Micro Beams Based on the Strain Gradient Theory

In this paper, the flexural free vibrations of three dimensional micro beams are investigated based on strain gradient theory. The most general form of the strain gradient theory which contains five higher-order material constants has been applied to the micro beam to take the small-scale effects into account. Having considered the Euler-Bernoulli beam model, governing equations of motion are w...

متن کامل

Wave Propagation in Rectangular Nanoplates Based on a New Strain Gradient Elasticity Theory with Considering in-Plane Magnetic Field

In this paper, on the basis of a new strain gradient elasticity theory, wave propagation in rectangular nanoplates by considering in-plane magnetic field is studied. This strain gradient theory has two gradient parameters and has the ability to compare with the nonlocal elasticity theory. From the best knowledge of author, it is the first time that this theory is used for investigating wave pro...

متن کامل

Static analysis of rectangular nanoplates using exponential shear deformation theory based on strain gradient elasticity theory

In this research, the bending analysis of rectangular nanoplates subjected to mechanical loading is investigated. For this purpose, the strain gradient elasticity theory with one gradient parameter is presented to study the nanoplates. From the best knowledge of authors, it is the first time that the exponential shear deformation formulation based on strain gradient elasticity theory is carried...

متن کامل

Free Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory

In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in con...

متن کامل

A review of size-dependent elasticity for nanostructures

Nanotechnology is one of the pillars of human life in the future. This technology is growing fast and many scientists work in this field. The behavior of materials in nano size varies with that in macro dimension. Therefore scientists have presented various theories for examining the behavior of materials in nano-scale. Accordingly, mechanical behavior of nano-plates, nanotubes nano-beams and n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004